Journal Information
Vol. 24. Issue 2.
Pages 120-129 (March - April 2020)
Share
Share
Download PDF
More article options
Visits
3628
Vol. 24. Issue 2.
Pages 120-129 (March - April 2020)
Original article
Open Access
New laboratory perspectives for evaluation of vivax malaria infected patients: a useful tool for infection monitoring
Visits
3628
Eduardo Rodrigues Alves-Juniora,b,
Corresponding author
eduardo.rodrigues@univag.edu.br

Corresponding author.
, Luciano Teixeira Gomesa,d, Thaís Caroline Dallabona Dombroskib, Andréia Ferreira Nerya,d,e, Samuel Vandresen-Filhoa, Luciano Nakazatoc, Cor Jesus Fernandes Fontesa,d,e, Fabrício Rios-Santosa
a Universidade Federal de Mato Grosso, Faculdade de Medicina, Cuiabá, MT, Brazil
b Centro Universitário de Várzea Grande, Departamento de Ciencias da Saúde, Varzea Grande, MT, Brazil
c Universidade Federal de Mato Grosso, Hospital Veterinário e Laboratório de Microbiologia e Biologia Molecular Veterinária, Cuiabá, MT, Brazil
d Hospital Universitário Julio Muller, Cuiabá, MT, Brazil
e Faculdade de Ciências Biomédicas, Cacoal, RO, Brazil
This item has received

Under a Creative Commons license
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Figures (1)
Tables (6)
Table 1. Characteristics of 87 patients with acute Plasmodium vivax malaria.
Table 2. Comparison of the proportions and percentile distribution of hematological parameters in 87 patients in acute phase of Plasmodium vivax malaria.
Table 3. Comparison of the proportions and percentile distribution of biochemical parameters of blood in 87 patients in acute phase of Plasmodium vivax malaria.
Table A1. Reference values used as cut-off points, considering a population that best represents the study sample.
Table A2. Comparison of the changes in cut-off points and the percentile distribution of hematological parameters of 87 patients in acute and convalescent phases of Plasmodium vivax malaria.
Table A3. Comparison of the changes in cut-off points and the percentile distribution of blood biochemical parameters of 87 patients in acute and convalescent phases of Plasmodium vivax malaria.
Show moreShow less
Abstract

In recent years, the number of cases with severe Plasmodium vivax malaria has shown an increasing trend. It is, therefore, important to identify routine laboratory markers that best characterize the acute disease phase and can serve as a tool for clinical follow-up of patients. In a cohort study, we followed 87 patients with acute P. vivax monoinfection acquired in an endemic region of the Brazilian Amazon. Forty-two different biochemical and hematological parameters frequently tested in clinical routine were evaluated at the acute phase and the convalescent phase. A total of 42 laboratory tests were performed: biochemical parameters measured were serum lipids levels, aminotransferases, bilirubin, amylase, glucose, urea, creatinine, albumin, globulin, uric acid, C-reactive protein, and alpha-1-acid glycoprotein. Hematological parameters included total and differential white blood cell and platelet counts, hemoglobin concentration, mean platelet volume, platelet width distribution, and plateletcrit. Our results show that several biochemical and hematological parameters were associated with acute phase P. vivax malaria and these parameters reverted to normal values in the convalescent phase. The use of these parameters during diagnosis and follow-up of the infection is a useful clinical tool to evaluate the clinical course and therapeutic response of patients with uncomplicated vivax malaria.

Keywords:
Plasmodium vivax
Laboratory biomarkers
Acute phase
Prognosis
Clinical status
Full Text
Introduction

Worldwide, malaria is one of the major parasitic diseases. It affected 219 million people in 2017 and was the cause of 435,000 deaths, making it a major public health problem.1 Currently, 40% of the world's population is exposed to malaria, with 2.9 billion individuals, especially those living in tropical and subtropical regions, likely to acquire Plasmodium vivax malaria. In Brazil, the transmission of malaria is mainly concentrated in the Amazon region (99.9% of all reported Brazilian malaria cases are from this region), with P. vivax accounting for 90% of these cases.2

P. vivax infection has been considered to be an uncomplicated disease for many years. However, recently, numerous cases of severe disease course and deaths have been reported, with complications in several organs as were not observed previously. Studies have shown that the risk of malaria complications varies substantially across the world, and there is a regional disease profile.1–7

In view of the new clinical picture of P. vivax malaria, some new laboratory parameters, which were not previously evaluated in the medical routine, are being evaluated as biomarkers for disease assessment.8–12 To contribute to the assessment of patient with the infection, it was necessary to investigate new laboratory parameters associated with the acute phase of vivax malaria. Significant changes in these markers from acute to convalescent clinical phases might be useful in monitoring the clinical evolution and the initial patient response to malaria treatment.13–15 This study reports some new laboratory markers associated with the acute phase of P. vivax malaria and we, hereby, suggest that they are useful tools in the management of patients with vivax malaria infection.

Material and methods

This was a descriptive historical cohort in which 189 patients from the Brazilian Amazon Region diagnosed with P. vivax monoinfection by microscopic16 and molecular17 methods who attended the Reference Center for Diagnosis and Treatment of Malaria in the state of Mato-Grosso, Brazil from 2010 to 2016. Of these, a total of 87 (46%) patients had clinical and laboratory results from both acute and convalescent phases in the database and were included in the study. Information from the convalescent phase was collected at the time the patients returned to check for cure between 7 (25th percentile) and 12 days (75th percentile) after diagnosis and treatment initiation.

Patients with comorbidities, diagnosed with mixed malaria, used antibiotics in the last seven days prior to care, or already on treatment at the time of care were not included in the study.

Forty-two different laboratory parameters (Table A1) were analyzed in both clinical phases; these included lipid profile, liver function, renal function, coagulation factors, total protein and fractions, hematological parameters, including hemoglobin concentration, total and differential white blood cell counts, platelet count, and related parameters, conventional acute inflammatory markers, and concentrations of uric acid, amylase, and glucose. Determination of alterations in these parameters was based on the reference intervals established for each test (Table A1).18–22 All the hematological and biochemical exams were performed using automated equipment, following the standards of laboratory quality control (Pentra 80 Hematology Counter Horiba Medical, Montpellier, France; and CT 600i Automated Analyzer Wiener Laboratories, Rosario, Argentina).

In this cohort study, the above mentioned hematological and biochemical parameters were compared during acute and convalescent phases of disease. Therefore, a control group was not considered necessary.

require a, since the patient's outcome in the acute phase is being compared with himself in the convalescent phase using the normal range limit as a cutoff point.

The present study was not intended to gather information regarding severe vivax malaria, but to describe what was found in the population studied. This laboratory information represents the profile of these Brazilian Amazon patients treated at a reference center during the period described.

Statistical analysis

The statistical analyses were performed using Stata Analysis and Statistical Package version 12 (StataCorp LC, Texas, USA) software. Descriptive analysis of all variables was performed as the quartile distribution. To investigate the changes in the values of the laboratory parameters between acute and the convalescent phases, the data (all non-parametric, because of non-normality in the Shapiro–Wilk test) were compared with the Wilcoxon matched pair signed-rank test. The Wilcoxon test is more appropriate when it comes to comparative results, as is our case with results at two moments, one in the acute phase and one in the convalescence phase.

The cutoff point of each parameter for change identification was established within the normal range limits.18–22 The proportion of patients with values above or below the selected cut-off point was compared between the groups of acute and convalescent phases of vivax malaria. This analysis was performed in a 2×2 table and the results of chi-square test and the 95% confidence interval of the odds ratio were compared between the groups. For all statistical analyses, the level of significance was 5% (α error=0.05).

The sample number of the present study represents the population at a confidence level of 95% with a sampling error of 8%.

Ethical considerations

Ethical and methodological aspects of this study were approved by the Ethical Committee of the Julio Muller School Hospital in Cuiabá, Mato Grosso, Brazil (protocol # 1.001.158/2015), according to the National Brazilian Health Council (Resolutions 196/96 and 466/12). All participants were informed about the objectives and procedures of the study, and participated voluntarily by giving written informed consent.

Results and discussionParticipants

The patients included in the study were mostly male (82%), with a mean (±SD) age of 40 (±15) years. The majority were occupationally involved in risky activities for malaria transmission, such as mining and truck driving. All cases were from the Brazilian Amazon, a region endemic for malaria, and 23% were prime-infected; the other cases reported at least one previous malaria episode at the time of diagnosis. The median parasite density was 4000/mm3, ranging from 1500/mm3 (percentile 25) to 10,000/mm3 (percentile 75) (Table 1).

Table 1.

Characteristics of 87 patients with acute Plasmodium vivax malaria.

Features    (%) 
Sex  Male  82 
  Female  18 
Age (years)  0–5 
  6–11 
  12–17 
  18–39  44 
  ≥40  50 
Place  Pará  54 
  Rondônia  31 
  Mato Grosso  12 
  Amazonas 
Profession  Mine prospector  22 
  Truck driver  17 
  Other (46 professions)  61 
Number of previous malaria episodes  23 
  1–2  34 
  3–4  12 
  ≥5  31 
Parasite density (/μL)  <5000  57 
  5000–10,000  18 
  10,000–50,000  23 
  >50,000 

Most patients had fever, chills, myalgia, headache, epigastric pain and vomiting, the classic symptoms of malaria. According to WHO13 criteria there were no cases of severely ill patients. Jaundice and enlarged spleen and liver, classic clinical signs of malaria, were present in some cases.23

Laboratory parameters

Out of the 42 laboratory parameters analyzed, 22 were varied significantly from acute phase to convalescent phase. Odds ratio above 1.0 meant a greater the probability of an abnormal result in the acute phase, whereas odds ratio below 1.0 meant a greater the probability of an abnormal result in the convalescent phase. The 10 laboratory parameters that were altered in the acute phase and returned to normal in the convalescent phase were C-reactive protein (CRP), plateletcrit (PCT), lymphocyte count, platelet count, total (TB), direct (DB) and indirect bilirubin (IB), neutrophil-to-lymphocyte ratio (NLR), α-1-acid glycoprotein (AGP), and eosinophil count (Tables 2 and 3, and Fig. 1).

Table 2.

Comparison of the proportions and percentile distribution of hematological parameters in 87 patients in acute phase of Plasmodium vivax malaria.

Parameter (in the acute phase)  Cut-off  Change in cut-off point  pa  Percentile distributionpb 
    OR (95%CI)    p25  p50  p75   
ESR (mm/h)  >15  1.9 (1.2–3.2)  0.006  13  22  38  <0.001 
Platelet count (/μL)  <150,000  25.5 (13.3–50.2)  <0.001  75,000  108,000  166,000  <0.001 
PDW (%)  >15.7  2.4 (1.2–4.8)  0.006  16.5  20.3  21.8  <0.001 
PCT (%)  <0.14  39.5 (16.5–98.2)  <0.001  0.07  0.10  0.12  <0.001 
Leukocytes (cell/μL)  <4000  3.9 (1.5–11.9)  0.002  4410  5210  6500  <0.001 
Lymphocyte (cell/μL)  <1000  28.0 (8.8–141.6)  <0.001  862  1545  2161  <0.001 
NLR  >2.6  16.6 (7.5–41.1)  <0.001  1.1  2.0  4.3  <0.001 
Monocyte (cell/μL)  >800  3.7 (1.5–10.3)  0.001  307  469  663  0.006 
Eosinophil (cell/μL)  <40  7.3 (2.9–21.5)  <0.001  43  74  113  <0.001 
Reticulocyte (%)  >1.5  0.4 (0.2–0.6)  <0.001  0.6  1.7  <0.001 
a

Comparison of the changes in cut-off points between acute and convalescent phases, as determined by odds ratio (CI95%) and chi-square test.

b

Comparison of the values of parameters between acute and convalescent phases, as determined by Wilcoxon matched pair signed-rank test

Abbreviations: ESR, erythrocyte sedimentation; PDW, platelet distribution width; PCT, plateletcrit; NLR, neutrophil-to-lymphocyte ratio.

Table 3.

Comparison of the proportions and percentile distribution of biochemical parameters of blood in 87 patients in acute phase of Plasmodium vivax malaria.

Parameter (in the acute phase)  Cut-off  Change in cut-off point  pa  Value distributionpb 
    OR (95%CI)    p25  p50  p75   
AGP (mg/dL)  >120  13.3 (7.0–25.7)  <0.001  118  134  174  <0.001 
CRP (mg/dL)  >8.0  50.3 (20.8–136.7)  <0.001  39.5  91.2  113.4  <0.001 
TB (mg/dL)  >1.0  15.0 (7.4–32.5)  <0.001  0.7  1.0  1.7  <0.001 
IB (mg/dL)  >0.7  17.3 (7.9–42.9)  <0.001  0.5  0.7  1.1  <0.001 
DB (mg/dL)  >0.3  10.4 (5.0–23.6)  <0.001  0.2  0.3  0.5  <0.001 
Cholesterol (mg/dL)  ≥200  0.2 (0.1–0.7)  0.002  101  132  153  <0.001 
LDL (mg/dL)  ≥100  0.2 (0.1–0.4)  <0.001  44  72  101  <0.001 
Non HDL (mg/dL)  ≥130  0.2 (0.1–0.4)  <0.001  84  106  131  <0.001 
Albumin (g/dL)  <3.5  0.3 (0.1–0.7)  0.003  3.7  4.0  4.2  <0.001 
Sodium (mEq/L)  <136  1.9 (1.0–3.8)  0.047  135  138  141  0.010 
Potassium (mEq/L)  <3.5  4.1 (1.1–22.3)  0.020  3.8  4.0  4.2  <0.001 
Amylase (U/L)  >125  0.2 (0.1–1.0)  0.027  38  51  67  <0.001 
a

Comparison of the changes in the cut-off points between acute and convalescent phases, as determined by odds ratio (CI95%) and chi-square test.

b

Comparison of the values of parameters between acute and convalescent phases, as determined by Wilcoxon matched pair signed-rank test.

Abbreviations: AGP, α-1-acid glycoprotein; CRP, C-reactive protein; TB, total bilirubin; IB, indirect bilirubin; DB, direct bilirubin; LDL, low density lipoprotein cholesterol; non-HDL, non high density lipoprotein cholesterol.

Fig. 1.

Distribution of the values of 10 laboratory parameters that showed greater changes in the cut-off points (dashed line) between the acute and convalescent phases of vivax malaria.

(0.2MB).

As described for other inflammatory diseases,24 CRP was also increased in acute malaria and this increase was confirmed to be associated with the P. vivax acute phase in the present study. The median CRP in the acute phase dropped from 91 to 6.6mg/dL in the convalescent phase (p<0.001). The proportion of patients with increased CRP levels in the acute phase was 50-fold higher (95%CI: 20.8–136.7; p<0.001) than in the convalescent phase (Table 3 and Table A3). Similarly, α-1-acid glycoprotein (AGP) and erythrocyte sedimentation rate (ESR) were significant higher in the acute phase compared to results in the convalescent phase. These findings suggest that CRP, AGP, and ESR could be used to establish the “baseline” in P. vivax malaria that could be subsequently used to monitor the therapeutic response of patients.25 In the present study lactate dehydrogenase (LDH) presented a later clearance and remained altered in the convalescent phase, and creatine phosphokinase (CPK) did not change in any of the phases (Table A3).

The probability of a low platelet count in the acute phase was 25-fold higher (95%CI: 13.3–50.2; p<0.001) than in the convalescent phase. The probability of patients with low PCT in the acute phase was 39-fold (95%CI: 16.5–98.2; p<0.001) higher. In addition, a platelet distribution width (PDW) above normal was 2.4-fold (95%CI: 1.2–4.8; p=0.006) more likely in the acute phase (Table 2 and Table A2). Compared with the PDW, the mean platelet volume (MPV) was significantly higher in the acute phase (p<0.001). All these platelet parameters are indicative of early production of larger and more efficient platelets. In fact, one study showed that platelets with larger volumes are functionally more active.26 Both PCT and platelet count can also help in the clinical evaluation of patients with acute vivax malaria.

Mechanisms have been proposed to explain thrombocytopenia during malaria episodes, including platelet destruction by immune mechanisms; low medullary platelet production; low thrombopoietin synthesis; platelet sequestration in the spleen; and systemic sequestration. These changes are transient and patients usually recover completely after malaria treatment. In addition, thrombocytopenia is associated with a higher risk for hemorrhage.27–29

The WBC count in malaria could be normal but several studies have shown that malaria patients have leukopenia associated with relative increase of neutrophil count in peripheral blood.30,31 The probability of low lymphocyte and eosinophil counts were 28-fold (95%CI: 8.8–141.6; p<0.001) and 7-fold (95%CI: 2.9–21.5; p<0.001) higher in the acute phase. On the other hand, the probability of an increased NLR was 16-fold (95%CI: 16.6 (7.5–41.1); p<0.001) in the acute phase. In our study, the median of the NLR changed from 2.5 in the acute phase to 1.4 in the convalescent phase (Table 2 and Table A2).

Because of a decrease in the number of lymphocytes and increase in neutrophil count in P. vivax malaria, the NLR index is considered to be a novel inflammatory biomarker in malaria, indicating poor prognosis; greater the difference between these parameters, more severe is the disease.32 However, in our study, the evaluation of lymphocyte number alone was better as an acute phase marker than the NLR index. Our data is in line with a study conducted in Colombia in 2015 wherein P. vivax malaria patients with clinical complications had decreased leukocyte, lymphocyte, and eosinophil counts, and showed an increase in monocyte and neutrophil counts.33

In our study the basophil count showed a significant decrease in the acute phase. So far, this had not been reported in malaria; in the literature, this reduction has been described in association with depression,34 urticaria,35 bladder cancer,36 hyperthyroidism, and allergy.37

Reticulocyte count was in the normal range in the acute phase and increased in the convalescent phase; this shows a late response of this marker, which is not good for an acute phase marker. Hemoglobin and hematocrit are also considered by WHO as criteria for the severity of malaria.13,29 Although hemoglobin and hematocrit values in the acute phase were decreased, they were not significantly different from those in the convalescence phase, which could be explained by the delay in the erythropoiesis response after erythrocyte disruption (Table A2).

During infection, there is an obvious loss of infected red blood cells due to parasite maturation, but many uninfected red blood cells are also destroyed due to antibody sensitization, membrane alterations, increased reticuloendothelial activity in the spleen and suppression of erythropoiesis, contributing to the reduction in red blood cells.38,39

Regarding biochemical serum parameters, other markers were higher in the acute phase of P. vivax malaria such as IB (OR: 17.3, 95%CI: 7.9–42.9; p<0.001), DB (OR: 10.4, 95%CI: 5.0–23.6; p<0.001), sodium (OR: 1.9, 95%CI: 1.0–3.8; p=0.047), and potassium (OR: 4.1, 95%CI: 1.1–22.3; p=0.020). On the other hand, serum total cholesterol (OR: 0.2, 95%CI: 0.1–0.7; p=0.002), LDL (OR: 0.2, 95%CI: 0.1–0.4; p<0.001), non-HDL (OR: 0.2, 95%CI: 0.1–0.4; p<0.001), albumin (OR: 0.3, 95%CI: 0.1–0.7; p=0.003), and amylase (OR: 0.2, 95%CI: 0.1–1.0; p=0.027) were reduced in the acute phase (Table 3 and Table A3). Total bilirubinemia is one of the markers for severity of P. vivax,13 but indirect hyperbilirubinemia, the fraction produced due to hemolysis, was better correlated with the P. vivax acute phase in the studied patients, compared to DB and TB.

The differences found in lipid profile are in line with other reports.40–42 Total cholesterol and its fractions, LDL, non-HDL, and HDL, decreased in the acute phase, whereas triglyceride values were increased (Table A3). It has been suggested that lipid changes are part of an acute phase reaction, which can be attributed, in part, to plasma leakage induced by increased capillary permeability and hemozoin formation.43,44 Another possibility is that cell division of parasites during blood schizogony, to form new merozoites, is highly dependent on the intra-erythrocytic cholesterol. Thus, to ensure their development, malaria parasites must extract lipids from their hosts.45

In the present study, the patients had lower albumin levels (p<0.001) in the acute phase, but had normal globulin levels (Table 3). Probably, this hypoalbuminemia is caused by hepatic impairment in malaria, as albumin is synthesized in the liver. Similarly, the prothrombin time (PT) was higher in the acute phase and prothrombin was also synthesized in the liver (p=0.001).13,46 Other liver parameters showed no changes in the present study.

There was no difference in creatinine (p=0.541), urea (p=0.062), and blood glucose (p=0.080) levels between acute and convalescent phases. In fact, only one patient showed glycemia below 60mg/dL; this is not frequent among patients with P. vivax malaria from the Amazon region. In our research, levels of convalescent phase amylase were higher than in the acute phase, demonstrating late increase of this enzyme or decrease in the acute phase, which has not been reported so far. The mechanisms leading to amylase change in malaria have not yet been elucidated.47 Sodium and potassium levels were significantly more reduced in the acute phase compared to that in the convalescent phase. Decreased levels of sodium and potassium have been reported in other studies on severe P. vivax malaria48,49 (Table A3).

The results of the present study clearly showed that several hematological and biochemical parameters are altered in the acute phase of vivax malaria, but they revert to normal values in the convalescence phase.

Conclusion

The 10 most relevant parameters for evaluating patients in the acute phase of P. vivax malaria were C-reactive protein, indirect bilirubin, neutrophil-to-lymphocyte ratio, total bilirubin, α-1-acid glycoprotein, and direct bilirubin, which increased expressively in the acute phase. In contrast, plateletcrit, lymphocyte, platelet and eosinophil counts were significantly reduced in the acute phase. All these parameters reverted to normal values during the convalescence period. Considering that these blood parameters are widely used in medical routine, these findings suggest that these parameters could help physicians in the first clinical evaluation and during therapeutic follow-up of uncomplicated vivax malaria infected patients.

Funding sources

The present research was funded by governmental sources: Fundação de Amparo a Pesquisa de Mato Grosso (FAPEMAT) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgments

We thank colleagues from the Univag University Center, Federal University of Mato Grosso and Julio Muller School Hospital, who collaborated in various phases of this study.

Appendices

Table A1.

Reference values used as cut-off points, considering a population that best represents the study sample.

Parameters  Reference value  Cut-off  Ref. 
Inflammatory markers
α-1-acid glycoprotein – AGP (mg/dL)  60–120  >120  22 
C-reactive protein – CRP (mg/dL)  <8.0  >8.0  18 
Creatine phosphokinase – CPK (mg/dL)  55–170  >170  18 
Erythrocyte sedimentation – ESR (mm/h)  0–15  >15  18 
Lactate dehydrogenase – LDH (U/L)  80–225  >225  18 
Platelet parameters
Platelet count (n/μL)  150,000–450,000  <150,000  18 
Mean platelet volume – MPV (fl)  8.4–11.4  >11.4  20 
Platelet distribution width – PDW (%)  8.7–15.7  >15.7  20 
Plateletcrit – PCT (%)  0.14–0.24  <0.14  20 
Total leukocytes and fractions
Leukocytes (cell/μL)  4000–11,000  <4000  21 
Neutrophil (cell/μL)  2000–7500  >7500  21 
Lymphocyte (cell/μL)  1000–4000  <1000  21 
Neutrophil-to-lymphocyte ratio – NLR  –  2.6  a 
Monocyte (cell/μL)  200–800  >800  21 
Eosinophil (cell/μL)  40–400  <40  21 
Basophile (cell/μL)  0–100  >100  21 
Hematometric parameters       
Reticulocyte (%)  0.5–1.5  >1.5  18 
Hemoglobin (g/dL)  14–18  <14  18 
Hematocrit (%)  42–50  <42  18 
Total bilirubin – TB (mg/dL)  0.3–1.0  >1.0  18 
Indirect bilirubin – IB (mg/dL)  0.2–0.7  >0.7  18 
Direct bilirubin – DB (mg/dL)  0.1–0.3  >0.3  18 
Lipidogram
Cholesterol (mg/dL)  <200  ≥ 200  18 
Triglyceride (mg/dL)  <150  ≥ 150  18 
High density lipoprotein cholesterol – HDL (mg/dL)  <40  ≥ 40  18 
Low density lipoprotein cholesterol – LDL (mg/dL)  <100  ≥ 100  18 
Non-high density lipoprotein cholesterol – non-HDL (mg/dL)  <130  ≥ 130  19 
Liver function
Proteins (g/dL)  5.5–9.0  <5.5  18 
Albumin (g/dL)  3.5–5.5  <3.5  18 
Globulin (g/dL)  2.0–3.5  >3.5  18 
Prothrombin time – PT (seconds)  11–13  >13  18 
Activated partial thromboplastin time – APTT (seconds)  25–35  >35  18 
Aspartate aminotransferase – AST (U/L)  10–40  >40  18 
Alanine aminotransferase – ALT (U/L)  10–40  >40  18 
Alkaline phosphatase – ALP (U/L)  30–120  >120  18 
Renal function
Urea (mg/dL)  8–20  >40  18 
Creatinine (mg/dL)  0.7–1.3  >1.3  18 
Sodium (mEq/L)  136–145  <136  18 
Potassium (mEq/L)  3.5–5.0  <3.5  18 
Other parameters: uric acid, amylase, glucose
Uric acid (mg/dL)  3.0–7.0  <3.0  18 
Amylase (mg/dL)  25–125  >125  18 
Glucose (mg/dL)  70–99  <70  18 
a

There is no reference value for the neutrophil-to-lymphocyte ratio, the 70th percentile was used as cutoff.

Ref: References

Table A2.

Comparison of the changes in cut-off points and the percentile distribution of hematological parameters of 87 patients in acute and convalescent phases of Plasmodium vivax malaria.

Parameters  Clinical Phase  Cut-off  Change in Cut-off point  pa  Percentile distributionpb 
      OR (95%CI)    p25  p50  p75   
ESR (mm/h)  Acute  >15  1.9 (1.2–3.2)  0.006  13  22  38  <0.001 
  Convalescent        09  19  34   
Platelet count (/μL)  Acute  <150.000  25.5 (13.3–50.2)  <0.001  75,000  108,000  166,000  <0.001 
  Convalescent        225,000  258,000  344,000   
MPV (fl)  Acute  >11.4  1.6 (0.4–7.7)  0.507  8.4  9.5  10.4  <0.001 
  Convalescent        7.4  8.3  9.3   
PDW (%)  Acute  >15.7  2.4 (1.2–4.8)  0.006  16.5  20.3  21.8  <0.001 
  Convalescent        14.0  17.3  19.2   
PCT (%)  Acute  <0.14  39.5 (16.5–98.2)  <0.001  0.07  0.10  0.12  <0.001 
  Convalescent        0.18  0.22  0.27   
Leukocytes (cell/μL)  Acute  <4000  3.9 (1.5–11.9)  <0.002  4410  5210  6500  <0.001 
  Convalescent        5700  6560  7700   
Neutrophil (cell/μL)  Acute  >7500  0.8 (0.1–4.3)  0.732  2317  3100  3998  0.182 
  Convalescent        2805  3276  4037   
Lymphocyte (cell/μL)  Acute  <1000  28.0 (8.8–141.6)  <0.001  862  1545  2161  <0.001 
  Convalescent        2006  2443  2917   
NLR  Acute  >2.6  16.6 (7.5–41.1)  <0.001  1.1  2.0  4.3  <0.001 
  Convalescent        1.05  1.4  1.9   
Monocyte (cell/μL)  Acute  >800  3.7 (1.5–10.3)  0.001  307  469  663  0.006 
  Convalescent        260  411  610   
Eosinophil (cell/μL)  Acute  <40  7.3 (2.9–21.5)  <0.001  43  74  113  <0.001 
  Convalescent        102  154  246   
Basophile (cell/μL)  Acute  >100  0.6 (0.3–1.6)  0.293  45  62  <0.006 
  Convalescent        41  61  77   
Reticulocyte (%)  Acute  >1.5  0.4 (0.2–0.6)  <0.001  0.6  1.7  <0.001 
  Convalescent        1.0  2.0  3.1   
Hemoglobin (g/dL)  Acute  <14.0  0.9 (0.5–1.4)  0.555  12.0  13.1  14.3  0.124 
  Convalescent        11.8  13  14.2   
Hematocrit (%)  Acute  <42  0.7 (0.4–1.2)  0.222  35.9  38.5  41.8  0.221 
  Convalescent        35.3  38.5  41.3   
PT (sec)  Acute  >13.0  1.8 (0.7–4.3)  0.157  13.6  14.3  15.2  0.011 
  Convalescent        13.1  13.6  14.5   
APTT (s)  Acute  >35.0  1.2 (0.5–3.1)  0.651  35.0  37.5  39.5  0.517 
  Convalescent        34.2  35.7  39.2   
a

Comparison of the changes in cut-off points between acute and convalescent phases, as determined by odds ratio (CI95%) and chi-square test.

b

Comparison of the values of parameters between acute and convalescent phases, as determined by Wilcoxon matched pair signed-rank test

ESR, erythrocyte sedimentation; MPV, mean platelet volume; PDW, platelet distribution width; PCT, plateletcrit; NLR, neutrophil-to-lymphocyte ratio; PT, prothrombin time; APTT, activated partial thromboplastin time.

Table A3.

Comparison of the changes in cut-off points and the percentile distribution of blood biochemical parameters of 87 patients in acute and convalescent phases of Plasmodium vivax malaria.

Parameters  Clinical phase  Cut-off  Change in cut-off point  pa  Percentile distributionpb 
      OR (95%CI)    p25  p50  p75   
AGP (mg/dL)  Acute  >120  13.3 (7.0–25.7)  <0.001  118  134  174  <0.001 
  Convalescent        91  102  117   
CRP (mg/dL)  Acute  >8.0  50 (21–137)  <0.001  39.5  91.2  113.4  <0.001 
  Convalescent        3.8  6.6  10.0   
CPK (U/L)  Acute  >170  0.6 (0.3–1.3)  0.180  42  69  103  0.335 
  Convalescent        46  73  111   
LDH (U/L)  Acute  >225  0.8 (0.1–7.4)  0.848  359  432  582  <0.001 
  Convalescent        329  384  465   
TB (mg/dL)  Acute  >1.0  15.0 (7.4–32.5)  <0.001  0.7  1.0  1.7  <0.001 
  Convalescent        0.4  0.5  0.7   
IB (mg/dL)  Acute  >0.7  17.3 (7.9–42.9)  <0.001  0.5  0.7  1.1  <0.001 
  Convalescent        0.3  0.4  0.5   
DB (mg/dL)  Acute  >0.3  10.4 (5.0–23.6)  <0.001  0.2  0.3  0.5  <0.001 
  Convalescent        0.1  0.1  0.2   
Cholesterol (mg/dL)  Acute  ≥200  0.2 (0.1–0.7)  0.002  101  132  153  <0.001 
  Convalescent        134  152  174   
Triglyceride (mg/dL)  Acute  ≥150  1.4 (0.9–2.2)  0.141  99  167  258  0.052 
  Convalescent        90  150  214   
HDL (mg/dL)  Acute  ≥40  1.8 (0.7–5.0)  0.177  08  17  29  <0.001 
  Convalescent        20  25  31   
LDL (mg/dL)  Acute  ≥100  0.2 (0.1–0.4)  <0.001  44  72  101  <0.001 
  Convalescent        76  95  117   
Non HDL (mg/dL)  Acute  ≥130  0.2 (0.1–0.4)  <0.001  84  106  131  <0.001 
  Convalescent        109  126  146   
Proteins (g/dL)  Acute  <5.5  c  0.065  6.5  6.7  7.1  <0.001 
  Convalescent        6.8  7.2  7.5   
Albumin (g/dL)  Acute  <3.5  0.3 (0.1–0.7)  0.003  3.7  4.0  4.2  <0.001 
  Convalescent        4.0  4.1  4.3   
Globulin (g/dL)  Acute  >3.5  1.0 (0.5–1.9)  0.960  2.5  2.8  3.1  <0.001 
  Convalescent        2.8  3.0  3.4   
AST (U/L)  Acute  >40.0  1.6 (0.8–3.1)  0.168  18  25  34  0.034 
  Convalescent        18  22  31   
ALT (U/L)  Acute  >40.0  1.0 (0.6–1.6)  0.870  19  30  45  0.136 
  Convalescent        18  34  58   
ALP (U/L)  Acute  >120  1.1 (0.6–2.0)  0.778  118  160  205  0.052 
  Convalescent        122  149  177   
Urea (mg/dL)  Acute  >40  1.8 (0.9–3.6)  0.062  26  31  36  <0.015 
  Convalescent        23  28  35   
Creatinine (mg/dL)  Acute  >1.3  1.4 (0.4–4.7)  0.541  0.8  0.9  1.1  0.217 
  Convalescent        0.8  0.9  1.0   
Sodium (mEq/L)  Acute  <136  1.9 (1.0–3.8)  0.047  135  138  141  0.010 
  Convalescent        136  139  141   
Potassium (mEq/L)  Acute  <3.5  4.1 (1.1–22.3)  0.020  3.8  4.0  4.2  <0.001 
  Convalescent        4.0  4.3  4.6   
Uric acid (mg/dL)  Acute  <3.0  1.7 (0.6–5.5)  0.321  3.7  4.6  5.4  <0.001 
  Convalescent        4.3  5.2  6.2   
Amylase (U/L)  Acute  >125  0.2 (0.1–1.0)  0.027  38  51  67  <0.001 
  Convalescent        61  74  98   
Glucose (mg/dL)  Acute  <70  0.3 (0.1–1.4)  0.080  88  91  174  0.263 
  Convalescent        84  90  174   
a

Comparison of the changes in cut-off points between acute and convalescent phases, as determined by odds ratio (CI95%) and chi-square test.

b

Comparison of the values of parameters between acute and convalescent phases, as determined by Wilcoxon matched pair signed-rank test

c

95% confidence interval not possible because cells with zero

AGP, α-1-acid glycoprotein; CRP, C-reactive protein; CPK, creatine phosphokinase; LDH, lactate dehydrogenase; TB, total bilirubin; IB, indirect bilirubin; DB, direct bilirubin; HDL, high density lipoprotein cholesterol; LDL, low density lipoprotein cholesterol; non-HDL, non-high density lipoprotein cholesterol; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphatase.

References
[1]
R.N. Rabinovich, C. Drakeley, A.A. Djimde, B.F. Hall, S.I. Hay, J. Hemingway, et al.
malERA: an updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication.
PLOS Med, 14 (2017), pp. e1002455
[2]
World Health Organization.
WHO | World malaria report 2018.
World Health Organization, (2018),
[3]
E. Chirebvu, M.J. Chimbari, B.N. Ngwenya, B. Sartorius.
Clinical malaria transmission trends and its association with climatic variables in Tubu Village, Botswana: a retrospective analysis.
PLoS One, 11 (2016), pp. e0139843
[4]
B.B. Andrade, A. Reis-Filho, S.M. Souza-Neto, J. Clarêncio, L.M.A. Camargo, A. Barral, et al.
Severe Plasmodium vivax malaria exhibits marked inflammatory imbalance.
[5]
L.A.B. Cruz, M. Barral-Netto, B.B. Andrade.
Distinct inflammatory profile underlies pathological increases in creatinine levels associated with Plasmodium vivax malaria clinical severity.
PLoS Negl Trop Dis, 12 (2018), pp. e0006306
[6]
R. Kumar, K. Saravu.
Severe vivax malaria: a prospective exploration at a tertiary healthcare centre in Southwestern India.
Pathog Glob Health, 111 (2017), pp. 148-160
[7]
J.H. Im, H.Y. Kwon, J. Baek, S.W. Park, A. Durey, K.H. Lee, et al.
Severe Plasmodium vivax infection in Korea.
[8]
K. Saravu, K. Rishikesh, A. Kamath, A.B. Shastry.
Severity in Plasmodium vivax malaria claiming global vigilance and exploration–a tertiary care centre-based cohort study.
[9]
P.E. Chaparro-Narváez, M. Lopez-Perez, L.M. Rengifo, J. Padilla, S. Herrera, M. Arévalo-Herrera.
Clinical and epidemiological aspects of complicated malaria in Colombia, 2007-2013.
[10]
M.A. Pacheco, M. Lopez-Perez, A.F. Vallejo, S. Herrera, M. Arévalo-Herrera, A.A. Escalante.
Multiplicity of infection and disease severity in Plasmodium vivax.
PLoS Negl Trop Dis, 10 (2016), pp. e0004355
[11]
C. Naing, M.A. Whittaker, V. Nyunt Wai, J.W. Mak.
Is Plasmodium vivax malaria a severe malaria? A systematic review and meta-analysis.
PLoS Negl Trop Dis, 8 (2014), pp. e3071
[12]
B.E. Barber, T. William, M.J. Grigg, U. Parameswaran, K.A. Piera, R.N. Price, et al.
Parasite biomass-related inflammation, endothelial activation, microvascular dysfunction and disease severity in vivax malaria.
PLoS Pathog, 11 (2015), pp. e1004558
[13]
World Health Organization.
Guidelines for the treatment of malaria.
3ed ed., WHO Guidelines, (2015),
[14]
J.K. Baird, N. Valecha, S. Duparc, N.J. White, R.N. Price.
Diagnosis and treatment of Plasmodium vivax malaria.
Am J Trop Med Hyg, 95 (2016), pp. 35-51
[15]
CDC – Center for Disease Control and Prevention.
Treatment of Malaria – Guidelines for Clinicians.
(2019),
[16]
E.R. Alves-Junior, L.T. Gomes, D. Ribatski-Silva, C.R.J. Mendes, F.A. Leal-Santos, L.R. Simões, et al.
Assumed white blood cell count of 8,000 cells/μL overestimates malaria parasite density in the Brazilian Amazon.
[17]
G. Snounou, S. Viriyakosol, X.P. Zhu, W. Jarra, L. Pinheiro, V.E. do Rosario, et al.
High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction.
Mol Biochem Parasitol, 61 (1993), pp. 315-320
[18]
American Board of Internal Medicine.
Laboratory Tests Reference Ranges.
ABIM, (2018), pp. 1-13
[19]
S. Chowdhury, J.R. Chowdhury, S. Goswami.
The importance of non high density lipoprotein cholesterol in dyslipidaemia management.
J Diabetes Metab, 6 (2015), pp. 623
[20]
A.-E. Abass, I. Ismail, Razazyahia, E. Ali, R. Mohammed, S. Mohammed, et al.
Reference value of platelets count and indices in Sudanese using Sysmex KX-21.
Int J Healthc Sci, 3 (2015), pp. 2348-5728120
[21]
L. Wakeman, R. Munro, C. Russell, A. Benton, S. Hartnell, S. Al-Ismail.
New reference ranges in haematology for healthy adults using the modern Sysmex XE-2100 Automated Analyser.
Blood, 106 (2005), pp. 391-396
[22]
Z. Filip, K. Jan, S. Vendula, K.Z. Jana, M. Kamil, K. Kamil.
Albumin and α1-acid glycoprotein: old acquaintances.
Expert Opin Drug Metab Toxicol, 9 (2013), pp. 943-954
[23]
B. Autino, Y. Corbett, F. Castelli, D. Taramelli.
Pathogenesis of malaria in tissues and blood.
Mediterr J Hematol Infect Dis, 4 (2012), pp. e2012061
[24]
N.R. Sproston, J.J. Ashworth.
Role of C-reactive protein at sites of inflammation and infection.
Front Immunol, 9 (2018), pp. 754
[25]
J.-T. Wang, W.-H. Sheng, C.-T. Fang, Y.-C. Chen, J.-L. Wang, C.-J. Yu, et al.
Clinical manifestations, laboratory findings, and treatment outcomes of SARS Patients.
Emerg Infect Dis, 10 (2004), pp. 7
[26]
C. Becchi, M. Al Malyan, L.P. Fabbri, M. Marsili, V. Boddi, S. Boncinelli.
Mean platelet volume trend in sepsis: is it a useful parameter?.
Minerva Anestesiol, 72 (2006), pp. 749-756
[27]
M.V. Lacerda, M.P. Mourão, M.A. Alexandre, A.M. Siqueira, B.M. Magalhães, F.E. Martinez-Espinosa, et al.
Understanding the clinical spectrum of complicated Plasmodium vivax malaria: a systematic review on the contributions of the Brazilian literature.
[28]
F.A. Leal-Santos, S.B. Silva, N.P. Crepaldi, A.F. Nery, T.O. Martin, E.R. Alves-Junior, et al.
Altered platelet indices as potential markers of severe and complicated malaria caused by Plasmodium vivax: a cross-sectional descriptive study.
[29]
M. Kotepui, D. Piwkham, B. PhunPhuech, N. Phiwklam, C. Chupeerach, S. Duangmano.
Effects of malaria parasite density on blood cell parameters.
PLoS One, 10 (2015), pp. e0121057
[30]
R. Deshwal.
Clinical and laboratory profile of hospitalized malarial patients: an Agra-based study.
J Assoc Physicians India, 64 (2016), pp. 44-47
[31]
E.R. Alves-Junior, L.T. Gomes, D. Ribatski-Silva, C.R.J. Mendes, F.a. Leal-Santos, L.R. Simões, et al.
Assumed white blood cell count of 8,000 cells/μL overestimates malaria parasite density in the Brazilian Amazon.
[32]
C.S. Philipose, T. Umashankar.
The role of haematological parameters in predicting malaria with special emphasis on neutrophil lymphocyte count ratio and monocyte lymphocyte ratio: a single Institutional experience.
Trop Parasitol, 6 (2016), pp. 147-150
[33]
A. Tobón-Castaño, E. Mesa-Echeverry, A.F. Miranda-Arboleda.
Leukogram profile and clinical status in vivax and falciparum malaria patients from Colombia.
J Trop Med, 2015 (2015), pp. 1-11
[34]
J.H. Baek, H.-J. Kim, M. Fava, D. Mischoulon, G.I. Papakostas, A. Nierenberg, et al.
Reduced venous blood basophil count and anxious depression in patients with major depressive disorder.
Psychiatry Investig, 13 (2016), pp. 321-326
[35]
I. Kishimoto, N. Kambe, N.T.M. Ly, C.T.H. Nguyen, H. Okamoto.
Basophil count is a sensitive marker for clinical progression in a chronic spontaneous urticaria patient treated with omalizumab.
Allergol Int, 68 (2019), pp. 388-390
[36]
M. Ferro, G. Di Lorenzo, M.D. Vartolomei, D. Bruzzese, F. Cantiello, G. Lucarelli, et al.
Absolute basophil count is associated with time to recurrence in patients with high-grade T1 bladder cancer receiving bacillus Calmette–Guérin after transurethral resection of the bladder tumor.
World J Urol, (2019), pp. 1-8
[37]
W.B. Shelley, H.M. Parnes.
The absolute basophil count.
[38]
A.C. Anand, P. Puri.
Jaundice in malaria.
J Gastroenterol Hepatol, 20 (2005), pp. 1322-1332
[39]
V.A. Pathak, K. Ghosh.
Erythropoiesis in malaria infections and factors modifying the erythropoietic response.
Anemia, 2016 (2016), pp. 1-8
[40]
E.A. Jacob.
Assessment of altered plasma lipid pattern in Plasmodium falciparum malaria infected and non infected individuals.
Int J Hematol Disord, 1 (2014), pp. 27-30
[41]
J.L. Baptista, T. Vervoort, P. Van Der Stuyft, M. Wéry.
Changes in plasma lipid levels as a function of Plasmodium falciparum infection in São Tomé.
Parasite, 3 (1996), pp. 335-340
[42]
T.C. Mesquita, T.G.O. Martin, E.R. Alves, M.B.C. Mello, A.F. Nery, L.T. Gomes, et al.
Changes in serum lipid profile in the acute and convalescent Plasmodium vivax malaria: a cohort study.
[43]
I. Stubbe, A. Gustafson, P. Nilsson-Ehle.
Alterations in plasma proteins and lipoproteins in acute myocardial infarction: effects on activation of lipoprotein lipase.
Scand J Clin Lab Invest, 42 (1982), pp. 437-444
[44]
C.D. Fitch, G.Z. Cai, Y.F. Chen, J.D. Shoemaker.
Involvement of lipids in ferriprotoporphyrin IX polymerization in malaria.
Biochim Biophys Acta, 1454 (1999), pp. 31-37
[45]
S.W. White, J. Zheng, Y.-M. Zhang, C.O. Rock.
The structural biology of type II fatty acid biosynthesis.
Annu Rev Biochem, 74 (2005), pp. 791-831
[46]
E.R. Derbyshire, M.M. Mota, J. Clardy.
The next opportunity in anti-malaria drug discovery: the liver stage.
PLoS Pathog, 7 (2011), pp. e1002178
[47]
K.P. Abhilash, A.I. Ahmed, S. Sathyendra, O. Abraham.
Acute pancreatitis due to malaria: a case report of five patients and review of literature.
J Fam Med Prim Care, 5 (2016), pp. 691-694
[48]
J. Prakash, A.K. Singh, N.S. Kumar, R.K. Saxena.
Acute renal failure in Plasmodium vivax malaria.
J Assoc Physicians India, 51 (2003), pp. 265-267
[49]
M.E. van Wolfswinkel, D.A. Hesselink, R. Zietse, E.J. Hoorn, P.J. van Genderen.
Hyponatraemia in imported malaria is common and associated with disease severity.

This work was performed at: Universidade Federal de Mato Grosso, Faculdade de Medicina, Cuiabá, Mato Grosso, Brazil.

Copyright © 2020. Sociedade Brasileira de Infectologia
The Brazilian Journal of Infectious Diseases
Article options
Tools