Journal Information
Vol. 14. Issue 5.
Pages 433-436 (September - October 2010)
Share
Share
Download PDF
More article options
Vol. 14. Issue 5.
Pages 433-436 (September - October 2010)
Original article
Open Access
Prevalence of carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii in highcomplexity hospital
Visits
3340
Ana Milda Karsten Baumgart1, Marcelo André Molinari1, Alessandro Conrado de Oliveira Silveira2,
Corresponding author
acosilveira@furb.br

Correspondence to: Rua São Paulo, 2171 Blumenau - SC 89030-000 Brazil.
1 Pharmaceutical Biochemistry – Laboratório Santa Isabel Blumenau – SC
2 Professor – Department of Pharmaceutical Sciences (FURB) – Professor of Microbiology and Clinical Immunology
This item has received

Under a Creative Commons license
Article information
Abstract
Bibliography
Download PDF
Statistics
Abstract

Pseudomonas aeruginosa and Acinetobacter baumannii are Gram-negative bacilli that in the last decades have become prevalent agents of hospital infection due to high antimicrobial resistance developed by these microorganisms. The present study is a retrospective analysis of all positive cultures for these microorganisms in the period of January 2004 to December 2008. Resistance levels of A. baumannii and P. aeruginosa to carbapenems was high and showed a trend to increase during the period of study. In recent years the increasing incidence and resistance levels of A. baumannii and P. aeruginosa to the antimicrobials used for their treatment in the hospital setting underscores the relevance of infections caused by these bacteria. The selective pressure caused by indiscriminated use of broad-spectrum antibiotics in empirical hospital infections is probably the main reason for such an increase with the consequent impact upon patient morbidity and mortality.

Keywords:
Acinetobacter baumannii
Pseudomonas aeruginosa
drug resistance
carbapenems
hospital infection control program
Full text is only aviable in PDF
References
[1]
Ambler, RP. The structure of β-lactamases. Phil. Trans. R Soc. Lond. B, London, v. 289, n. 1036, pp. 321-31, May 1980.
[2]
Andrade SS, Jones RN, Gales AC, Sader HS. Increasing prevalence of antimicrobial resistance among Pseudomonas aeruginosa isolates in Latin American medical centres: 5 year report of the SENTRY Antimicrobial Surveillance Program (1997–2001). J. Antimicrob. Chemother., London, v. 52, n. 1, pp.140-1, jul. 2003.
[3]
CLSI (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Susceptibility Testing: Eighteenth Informational Supplement – Table M100 – S18, Wayne, PA: NCCLS, 2009.
[4]
H.M. Donald, W. Scaife, S.G. Amyes, et al.
Sequence analysis of ARI-1, a novel OXA β-Lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob.
Agents Chemother London, oct, 52 (2003), pp. 699-702
[5]
A.C. Gales, L.C. Menezes, S. Silbert, et al.
Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-β-lactamase.
J. Antimicrob. Chemother., London, 52 (2003), pp. 699-702
[6]
A.C. Gales, M.C. Tognim, A.O. Reis, et al.
Emergence of an IMP-like metallo-enzyme in an Acinetobacter baumannii clinical strain from a Brazilian teaching hospital.
Diagn. Microbiol. Infect. Dis. New York, jan, 45 (2003), pp. 77-79
[7]
A.C. Gales, L.D. Costa.
Novos padrões de resistência: como incorporar a detecção no laboratório.
Microbiologia in foco, São Paulo, 7 (2009), pp. 27-34
[8]
W. Jin, Y. Arakawa, H. Yasuzawa, et al.
Comparative study of the inhibition of metallo-β-lactamases (IMP-1 and VIM-2) by thiol compounds that contain a hydrophobic group.
Biol. Pharm. Bull, Tokyo jun, 27 (2004), pp. 851-856
[9]
D.M. Livermore.
Of Pseudomonas, porins, pumps and carbapenems.
J. Antimicrob. Chemother London, mar, 47 (2001), pp. 247-250
[10]
P. Nordmann, L. Poirel.
Emerging carbapenemases in gramnegative aerobes.
Clin. Microbiol. Infect. Oxford jun, 8 (2002), pp. 321-331
[11]
P. Nordmann.
Mécanismes de résistance aux bêtalactamines de Pseudomonas aeruginosa.
Ann. Fr. Anesth. Reanim. Paris, jun, 22 (2003), pp. 527-530
[12]
A. Oliver.
Resistencia a carbapenemas y Acinetobacter baumannii.
Enferm. Infecc. Microbiol. Clin., Barcelona may, 22 (2004), pp. 259-261
[13]
S.U. Picolli.
Metalo-β-lactamases e Pseudomonas aeruginosa.
Rev. Bras. Anal. Clin., Rio de Janeiroout/dez, 40 (2008), pp. 273-277
[14]
L. Poirel, P. Nordmann.
Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology.
Clin. Microbiol. Infect., Oxfordsep, 12 (2006), pp. 826-836
[15]
S. Quinteira, J.C. Sousa, L. Peixe.
Characterization of In100, a new integron carrying a metallo-β-lactamase and a carbenicillinase, from Pseudomonas aeruginosa.
Antimicrob. Agents Chemother., Washington jan, 49 (2005), pp. 451-453
[16]
H.S. Sader, R.N. Jones, A.C. Gales, et al.
SENTRY Participants Group (Latin America). SENTRY antimicrobial surveillance program report: latin american and brazilian results for 1997 through 2001.
Brazilian Journal of Infectious Diseases, Salvador, 8 (2004), pp. 25-79
[17]
H.S. Sader, M. Castanheira, R.E. Mendes, et al.
Dissemination and diversity of metallo-β-lactamases in Latin America: report from the SENTRY Antimicrobial Surveillance Program.
Int. J. Antimicrob. Agents, Amsterdamjan, 25 (2005), pp. 57-61
[18]
Siegel, Sidney. Estatistica não-paramétrica para as ciências do comportamento. Porto Alegre: ArtMed, 2006.
[19]
StatSoft Inc (2001). STATISTICA (data analysis software system), version 6. www.statsoft.com.
[20]
M.C. Tognim, A.C. Gales, A.P. Penteado, et al.
Dissemination of IMP-1 metallo-β-lactamase-producing Acinetobacter species in a Brazilian teaching hospital.
Infect. Control Hosp. Epidemiol., New Jerseyjul, 27 (2006), pp. 742-747
[21]
M.A. Toleman, A.M. Simm, T.A. Murphy, et al.
Molecular characterization of SPM-1 a novel metallo-β-lactamase isolated in Latin America: report from the SENTRY Antimicrobial Surveillance Program.
J. Antimicrob. Chemother., London, nov, 50 (2002), pp. 673-679
[22]
J.W. Walther-Rasmussen, N. Hoiby.
Oxa-type carbapenemases.
J. Antimicrob. Chemother. London, mar, 57 (2006), pp. 73-83
[23]
N. Woodford, M.F. Palepou, G.S. Babini, B. Holmes, D.M. Livermore.
Carbapenemases of Chryseobacterium (Flavobacterium) meningosepticum: distribution of blaB and characterization of a novel metallo-β-lactamase gene, blaB3, inthe type strain, NCTC 10016. Antimicrob.
Agents Chemother., Washington, jun, 44 (2000), pp. 1448-1452
Copyright © 2010. Elsevier Editora Ltda.. All rights reserved
Download PDF
The Brazilian Journal of Infectious Diseases
Article options
Tools