Journal Information
Vol. 14. Issue 5.
Pages 462-467 (September - October 2010)
Share
Share
Download PDF
More article options
Vol. 14. Issue 5.
Pages 462-467 (September - October 2010)
Original article
Open Access
Molecular typing and biological characteristics of Pseudomonas aeruginosa isolated from cystic fibrosis patients in Brazil
Visits
2994
Eliana Guedes Stehling1,
Corresponding author
elianags@fcfrp.usp.br

Correspondence to: Department of Toxicological and Bromatologic Clinical Analyses Faculty of Pharmaceutical Sciences of Ribeirão Preto, USP Av. do Café S/N – Monte Alegre – Ribeirão Preto – SP – Brazil CEP: 14040-903.
, Domingos S. Leite2, Wanderley D. Silveira3
1 Department of Toxicological and Bromatologic Clinical Analyses, Faculty of Pharmaceutical Sciences of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
2 Department of Microbiology and Immunology, IB, UNICAMP, Campinas, SP, Brazil
3 Dept. Genetics, Evolution and Bioagents, UNICAMP, Campinas, SP, Brazil
This item has received

Under a Creative Commons license
Article information
Abstract
Bibliography
Download PDF
Statistics
Abstract

The present study had as objective to evaluate the genotypic diversity and biological characteristics, such as hemolysin, protease, elastase of 56 clinical strains of Pseudomonas aeruginosa isolated from 13 cystic fibrosis (CF) patients attending at the School Hospital of Campinas State University (UNICAMP), Brazil. Genotypic diversity has been determined by Ribotyping (RT) and the pattern of the enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) of each strain. The production of elastase was significantly different only among mucoid and nonmucoid isolates. Joint results obtained by (RT) and ERIC-PCR methods were able to discriminate all strains isolated from both the same and different patients. Additionally, we observed four strain clusters with low diversity. The most infective strains were located in just two clusters. These results suggest that either there is a strong selection towards a specific genotype or that specific isolates could be responsible for the initial and subsequent colonization processes. More studies are necessary to know if these conclusions can be generalized for the general CF population.

Keywords:
cystic fibrosis Pseudomonas aeruginosa clonal analysis biological characteristics
Full text is only aviable in PDF
References
[1]
N. Renders, U. Römling, H. Verbrug, A. Van Belkum.
Comparative typing of Pseudomonas aeruginosa, by random amplification of polymorphic DNA or pulsed field gel electrophoresis of DNA macrorestriction fragments.
J Clin Microbiol, 34 (2001), pp. 3190-3195
[2]
T.F. Boat, M. Welch, A.L. Beaudet.
the Metabolic Basis of Inherited Diseases, pp. 3799-3876
[3]
S.S. Yoon, R. Coakley, G.W. La, et al.
Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions.
J Clin Invest, 116 (2006), pp. 436-446
[4]
L. Mereghetti, N. Marquet-van der Mee, J. Loulergue, et al.
Pseudomonas aeruginosa from cystic fibrosis patients: study using whole cell RAPD and antibiotic susceptibility.
Path Biol (Paris), 46 (1998), pp. 319-324
[5]
C. Van Delden, B.H. Iglewski.
Cell-to-cell signaling and Pseudomonas aeruginosa infections.
Emerg Infect Dis, 4 (1998), pp. 551-560
[6]
J.R. Govan, V. Deretic.
Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia.
Microbiol Rev, 60 (1996), pp. 539-574
[7]
T.L. Yahr, A.K. Hovey, S.M. Kulich, D.W. Frank.
Transcriptional analysis of the Pseudomonas aeruginosa exoenzyme S structural gene.
J Bacteriol, 177 (1995), pp. 1169-1178
[8]
M.C. Jaffar-Bandjee, A. Lazdunski, M. Bally, et al.
Production of elastase, exotoxin A, and alkaline protease in sputa during pulmonary exacerbation of cystic fibrosis in patients chronically infected by Pseudomonas aeruginosa.
J Clin Microbiol, 33 (1995), pp. 924-929
[9]
B. Konig, M.L. Vasil, W. Konig.
Role of haemolytic and non-haemolytic phospholipase C from Pseudomonas aeruginosa in interleukin-8 release from human monocytes.
J Med Microbiol, 46 (1997), pp. 471-478
[10]
A. Swiatecka-Urban, S. Moreau-Marquis, D.P. Maceachran, et al.
Pseudomonas aeruginosa inhibits endocytic recycling of CFTR in polarized human airway epithelial cells.
Amer J Physiol Cell Physiol, 290 (2006), pp. C862-C872
[11]
D. Kersulyte, M.J. Struelens, A. Deplano, D.E. Berg.
Comparison of arbitrarily primed PCR and macrorestriction (pulsed-field gel electrophoresis) typing of Pseudomonas aeruginosa strains from cystic fibrosis patients.
J Clin Microbiol, 33 (1995), pp. 2216-2219
[12]
Y. Liu, A. Davin-Regli, C. Bosi, et al.
Epidemiological investigation of Pseudomonas aeruginosa nosocomial bacteraemia isolates by PCR-based DNA fingerprinting analysis.
J Med Microbiol, 45 (1996), pp. 359-365
[13]
H. Speijer, P.H. Savelkoul, M.J. Bonten, et al.
Application of different genotyping methods for Pseudomonas aeruginosa in a setting of endemicity in an intensive care unit.
J Clin Microbiol, 37 (1999), pp. 3654-3661
[14]
K. Wolska, P. Szweda.
A comparative evaluation of PCR ribotyping and ERIC-PCR for determining the diversity of clinical Pseudomonas aeruginosa isolates.
Pol J Microbiol, 57 (2008), pp. 157-163
[15]
P.Y. Liu, Z.Y. Shi, Y.J. Lau, et al.
Comparison of different PCR approaches for characterization of Burkholderia (Pseudomonas) cepacia isolates.
J Clin Microbiol, 33 (1995), pp. 3304-3307
[16]
G.L. Giraldi, et al.
Pseudomonas and related genera.
Manual of clinical microbiology, 5th ed, pp. 429-441
[17]
B. Lee, J.A. Haagensen, O. Ciofu, J.B. Andersen, N. Hoiby, S. Molin.
Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis.
J Clin Microbiol, 43 (2005), pp. 5247-5255
[18]
F.M. Ausubel, R. Brent, R.E. Kingston, et al.
Curr prot in molecul biol.
Wiley Interscience, (1987),
[19]
M.M. Nociari, M. Catalano, D. Centron Garcia, et al.
Comparative usefulness of ribotyping, exotoxin A genotyping, and SalI restriction fragment length polymorphism analysis for Pseudomonas aeruginosa lineage assessment. Diagn. Microbiol. Infect.
Dis, 24 (1996), pp. 179-190
[20]
J. Sambrook, E.F. Fritsch, T. Maniatis.
Molecular cloning: a laboratory manual.
Cold Spring Harbour, (1989),
[21]
I. Tosin, S. Silbert, H.S. Sader.
The use of molecular typing to evaluate the dissemination of antimicrobial resistance among Gram-negative rods in Brazilian hospitals.
Braz J Infect Dis, 7 (2003), pp. 360-369
[22]
B. Ojeniyi, U.S. Petersen, N. Hoiby.
Comparison of genome fingerprinting with conventional typing methods used on Pseudomonas aeruginosa isolates from cystic fibrosis patients.
Apmis, 101 (1993), pp. 168-175
[23]
Yeh WC, Yang RC, Boyle. Popgene version 1.31 Microsoft Windows-Based freeware for population genetic analysis. Department of Renewable Resources, University of Alberta, Edmonton, AB Canada 1999.
[24]
K. Morihara.
Production of elastase and proteinase by Pseudomonas aeruginosa.
J Bacteriol, 88 (1964), pp. 745-757
[25]
E.D. Wilson.
Studies in bacterial protease I. the Relation of protease production to the culture medium.
J Bacteriol, 20 (1930), pp. 41-59
[26]
A. Agodi, A. Sciacca, F. Campanile, et al.
Molecular epidemiology of Pseudomonas aeruginosa from cystic fibrosis in Sicily: genome macrorestriction analysis and rapid PCR-ribotyping.
New Microbiol, 23 (2000), pp. 319-327
[27]
T. Bennekov, H. Colding, B. Ojeniyi, et al.
Comparison of ribotyping and genome fingerprinting of Pseudomonas aeruginosa isolates from cystic fibrosis patients.
J Clin Microbiol, 34 (1996), pp. 202-204
[28]
B. Curran, D. Jonas, H. Grundmann, et al.
Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa.
J Clin Microbiol, 42 (2004), pp. 5644-5649
[29]
W. Yan, L. Shi, W.X. Jia, et al.
Evaluation of the biofilmforming ability and genetic typing for clinical isolates of Pseudomonas aeruginosa by enterobacterial repetitive intergenic consensubased PCR.
Microbiol Immunol, 49 (2005), pp. 1057-1061
[30]
D. Spencer.
Clinical outcome in relation to care in centres specializing in cystic fibrosis. Cross infection with Pseudomonas aeruginosa is unusual.
Brit Med, 318 (1999), pp. 58
[31]
F.B. Spencker, S. Haupt, M.C. Claros, et al.
Epidemiologic characterization of Pseudomonas aeruginosa in patients with cystic fibrosis.
Clin Microbiol Infect, 6 (2000), pp. 600-607
[32]
B. Sener, O. Koseoglu, U. Ozcelik, et al.
Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis.
Int J Med Microbiol, 291 (2001), pp. 387-393
[33]
E. Mahenthiralingam, M.E. Campbell, J. Foster, et al.
Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis.
J Clin Microbiol, 34 (1996), pp. 1129-1135
[34]
U. Romling, B. Fiedler, J. Bosshammer, et al.
Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis.
J Infect Dis, 170 (1994), pp. 1616-1621
[35]
R.M. Berka, G.L. Gray, M.L. Vasil.
Studies of phospholipase C (heat-labile hemolysin) in Pseudomonas aeruginosa.
Infect Immun, 34 (1981), pp. 1071-1074
[36]
E.G. Stehling, W.D. Silveira, D.S. Leite.
Study of biological characteristics of Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis and patients with non-pulmonary infections.
Braz J Infect Dis, 12 (2008), pp. 86-88
[37]
D.G. Storey, E.E. Ujack, H.R. Rabin.
Population transcript accumulation of Pseudomonas aeruginosa exotoxin A and elastase in sputa from patients with cystic fibrosis.
Infect Immun, 60 (1992), pp. 4687-4694
[38]
K.S. Jagger, D.R. Bahner, R.L. Warren.
Protease phenotypes of Pseudomonas aeruginosa isolated from patients with cystic fibrosis.
J Clin Microbiol, 17 (1983), pp. 55-59
Copyright © 2010. Elsevier Editora Ltda.. All rights reserved
Download PDF
The Brazilian Journal of Infectious Diseases
Article options
Tools