
Review Article

Tuberculosis drug resistance profiling based onmachine

learning: A literature review

Abhinav Sharma a,*, Edson Machado b, Karla Valeria Batista Lima c,d,1,
Philip Noel Suffys b,1, Emilyn Costa Conceiç~ao e,f,1
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A B S T R A C T

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is one of the top 10 causes of death

worldwide. Drug-resistant tuberculosis (DR-TB) poses a major threat to the World Health Organi-

zation’s “End TB” strategy which has defined its target as the year 2035. In 2019, there were close

to 0.5 million cases of DRTB, of which 78% were resistant to multiple TB drugs. The traditional

culture-based drug susceptibility test (DST - the current gold standard) often takes multiple

weeks and the necessary laboratory facilities are not readily available in low-income countries.

Whole genome sequencing (WGS) technology is rapidly becoming an important tool in clinical

and research applications including transmission detection or prediction of DR-TB. For the latter,

many tools have recently been developed using curated database(s) of known resistance confer-

ring mutations. However, documenting all the mutations and their effect is a time-taking and a

continuous process and therefore Machine Learning (ML) techniques can be useful for predicting

the presence of DR-TB based on WGS data. This can pave the way to an earlier detection of drug

resistance and consequently more efficient treatment when compared to the traditional DST.
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Introduction

In 2019, there were about 0.5 million cases of drug-resistant

tuberculosis (DR-TB), of which 78% were resistant to multiple

TB drugs. The problem of multi-drug resistance TB (MDR-TB),

defined as simultaneously resistance at least to rifampicin

(RR-TB) and isoniazid (INH), the two most effective first-line

anti-TB drugs, complicates TB management (i) since it

requires longer treatment with drugs that are more expensive

and toxic (recommended a treatment regimen that includes

second-line drugs for people with MDR/RR-TB), and (ii) by the

rising number of incidences of MDR/RR-TB worldwide.1

To interrupt the chain of TB transmission and avoid the

development of DR-TB, there is need for rapid diagnosis, applica-

tion of an adequate treatment regimen and (regular) close follow-

up of the patient. To speed up diagnosis and generation of the

drug resistance profile, some methods based on nucleic-acid

amplification test (NAAT) are already endorsed by WHO such as

the Xpert-MTB-RIF ULTRA (Cepheid, Sunnyvale, CA, USA), focus-

ing only on the principal mutations associated with rifampicin-

resistance. For the better, WGS based techniques can predict the

drug resistance profile revealing known mutations2−6 and can be

utilized for proposing new resistance conferring mutations.7,8

In a comparative analysis of various drug resistance profile

methods, WGS has been shown to be a reliable technique

among the genotypic tests when compared to various DST,

being not only accurate, but also providing a rich set of addi-

tional information for further analysis.9 Therefore, WGS is

the basis of new insight into the genetic basis and unknown

mechanisms of drug resistance and as such, is essential for

the development of new antibiotics for TB.10 For this reason,

WGS is being proposed as the reference technique for detect-

ing mutations associated with DR-TB.11

It is therefore critical to explore the value of modern statis-

tical approaches such as Machine Learning (ML) to assist

rapid clinical diagnostics based on the predicted drug resis-

tance profile directly from the WGS data derived from DNA,

extracted from MTB cultures,4,12−16 as well as clinical speci-

mens such as (mostly) sputum.3,17,18

Recently, there have been many studies which explored

various classes of algorithms for predicting the drug resis-

tance profile from WGS data. One of the earliest included a

statistical and rule based (Direct Association) approach19,20

that helped to establish the feasibility of relying on WGS data

as the basis for further analysis, compared to the DST. The

dataset, techniques and limitations discussed in these

papers19,20 have been studied and analysed further in the last

five years.7,8,14,21,22 The drug resistance profile of a sputum

sample can be predicted within five days after sampling

which is roughly 24 days earlier than the WGS from Mycobac-

terial Growth Indicator Tube (MGIT) culture, and up to 31 days

earlier than DST; in addition, WGS-based DR prediction is less

expensive.23 There is strong evidence favouring the hypothe-

sis that direct WGS on sputum combined with specialized

software tools shall allow almost real-time diagnosis and sur-

veillance ability in a cost-effective manner,24 when compared

to the traditional approaches.

Despite the growing number of studies presenting and

evaluating tools for assessing drug resistance profile based on

WGS data, the concepts and application are not widely dis-

cussed within the biomedical environment and ML is perhaps

still relatively underutilized in clinical applications. Thus, in

this study we aimed to (i) describe and discuss the main

approaches for WGS analysis in TB diagnosis and detection of

DR, and (ii) analyze the TB drug resistance profiling based on

ML through a literature review.

Methodology

The data was collected through an in-depth search of the var-

ious publications in PubMed as well as WHO publications

including the words “whole genome sequencing” AND/OR

“drug resistance prediction”, AND/OR “machine learning”,

AND/OR “tuberculosis incidence surveys”, AND/OR “genomic

medicine”, AND/OR “clinical application of machine learning

algorithms” and analyzed based on the criteria of direct rele-

vance to the problem of drug resistance profiling using ML on

WGS data of MTB.

The inclusion criteria were: (i) the article having been pub-

lished no longer than six years ago and (ii) the sample size

being larger than 500 genomes. The exclusion criteria were: (i)

the absence of supplementary material such as sample IDs

from NCBI and, (ii) the study being limited to the use of classi-

cal statistical techniques.

Results and discussion

Drug resistance prediction using direct association

Conventional WGS based drug resistance prediction methods

rely on identification of the number and nature of mutations,

such as (mostly) Single Nucleotide Polymorphism (SNP) and

Insertion-Deletion (INDELS) as compared to a reference

genome, together with correlation with drug resistance profile

obtained by conventional DST. This method is driven by a

pre-documented library of resistance conferring SNP and is

therefore called as Direct Association method.6,19,20

The knowledge of resistance conferring SNP and its corre-

lation with drug resistance profile is a meticulous process

which demands extensive experimentation and literature

review to confirm the nature and location of the muta-

tions.6,25−29 An incomplete understanding of these mutations

and their effects, whether directly or indirectly, limits the

accuracy of molecular diagnostic tools.

Various online databases have been developed to provide

centralized resources to identify the mutations and to predict

their effects, including (i) MycoResistance,30 (ii) Tb-Portals,31

(iii) TBDReaMDB,32 (iv) Mubii-TB-DB,33 (v) ReSeqTB34 and most

recently byWHO.6

A study by Walker et al.19 applied WGS on 2,099 MTB iso-

lates to identify and classify common, as well as rare muta-

tions, which predict drug resistance profile of a particular

MTB sample for first and second-line drugs. This was

achieved by devising a classification algorithm for the

observed resistance-conferring mutations in the isolates, that

was compared to the reference genome to the SNP both in
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coding sequences (CDS) and their promoter regions as well as

the presence (insertion) and absence (deletion) of amino acids

in the sequence.

Another study by Allix-B�eguec et al.20 evaluated the

hypothesis that if all the resistance-conferring mutations

were known extensively, it should be possible to infer the

drug resistance profile from the presence or absence of these

mutations since the WGS data provides information for virtu-

ally all the genomic sites of interest associated with drug

resistance. The conclusions were favourable to the use of

WGS data, but the study also highlighted that, the drug resis-

tance profile interpretation might be complicated by the

underlying biological processes (e.g., gene-gene interaction)

which are still underexplored. The WHO has also published a

condensed catalogue of confidence-graded mutations that

have established correlations with DR in MTB6 that enumera-

tes all the mutations showing statistically significant experi-

mental association to resistance.

Software such as TB-profiler,35,36 Kvarq37 and MTBSeq38 are

based on algorithms relying on Direct Association to predict an

isolate’s drug resistance profile from their particular SNPs.

Recently, specifically for MDR, advanced molecular tests

have been developed, using the direct association approach

as well, but these also suffer from drawbacks such as inability

to model resistance conferring gene-gene interactions. In

addition, these tests are based on selective amplification of

antibiotic resistance associated genes for only a subset of

drugs used for TB treatment and therefore are less predictive

for drugs such as the second and third line of drugs.8

Drug resistance prediction using machine learning

ML is a field of computer science which aims to utilize avail-

able data to discover patterns, infer knowledge and then

make decisions based on this knowledge towards similar yet

unseen data. ML is further divided into (i) supervised learning

and (ii) unsupervised learning (Fig. 1).

Supervised learning is the most used category of ML algo-

rithms, that makes use of labelled dataset (training data) and

generates a generalized model which is used to make predic-

tions about unseen data. Some examples of supervised learn-

ing algorithms are Linear Regression, Logistic Regression, Support

Vector Machine.

Unsupervised learning, on the other hand, uses unlabelled

data as a training dataset and then tries to generalize the

inference or prediction model.39 Some examples of unsuper-

vised learning algorithms are Neural Networks, Principal Compo-

nent Analysis and K-means clustering.

Fig. 1 –Flow diagram for prediction of drug resistance fromwhole genome sequencing (WGS) data using computational

approaches. (A) The data generated fromWGS (FASTQ files) for (B) predicting drug resistance either using (C) the classical

Direct Association, which relies on a database of documented mutations at present or (D) Machine learning techniques, such

as (E) Supervised Learning, which relies on guided training of algorithms on hand-curated data to predict the effects of novel

mutations or (F) Unsupervised Learning, which relies on algorithmic techniques to discover patterns and predict effects of the

mutations.
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Deep learning, another branch of ML has been successfully

applied in multiple fields40 and is rapidly gaining popularity

in computational biology. This success is however, not with-

out some reservations, since deep learning effectively relies

on some very advancedmathematical concepts which are dif-

ficult to discern.41 One crucial aspect in computational

approaches is the identification and refinement of important

variables (called features) for the application of theses

algorithms.42

The biological processes which result in mutations giving

rise to more complex gene-gene interaction and therefore

lend themselves quite naturally to multi-variate analysis

techniques and can be better explored through ML algo-

rithms.

Machine learning application

After examining the title, abstracts, and conclusions of the

initially considered 431 papers, a total of 10 papers were

selected for full-text analysis (Fig. 2). For the 10 studies, we

highlighted (i) the algorithms used, (ii) the applied evaluation

metrics, (iii) the sample size, and (iv) their main conclusions

(Supplementary table 1).

The study by Yang et al.14 investigated the performance of

multiple classification algorithms with eight drugs as target

labels for DST prediction. The predictions were based on the

data generated by feature engineering on 23 candidate genes

and their 100 base-pair upstream regions,19 and were then

validated against the DST results for all 1,839 samples leading

to a total of 2,629 SNPs (dimensions), that were analyzed in

three feature sets of SNPs, with the assumption that all poly-

morphisms are resistance determining.

The authors also explored clustering techniques such as

Principal Component Analysis and Sparse Logistic Principal Compo-

nent Analysis to reduce the number of dimensions from 2,629

to two as principal components. These principal components

were used for a cluster analysis and with the observation that

Sparse Logistic Principal Component Analysis performed better in

identification of distinguished classes within a cluster.

The authors reported that the best performing models,

when compared to the rules based on Direct Association, per-

formed favourably with an increase in sensitivity for these

eight drugs. Models generated using the Product-of-Marginals

and the Support Vector Machine with Radial Basis Function kernel

were the best performers. These algorithms improved the

mean sensitivity in terms of resistance classification as well

as the area under the ROC curve (AUC) for first line of drugs

and the prediction results were comparable to the results

with respect to Direct Association based drug resistance pro-

filing.

In a follow up study by Yang et al. 43, the authors evaluated

a Multi-task with Deep Denoising Auto-encoder algorithm, that

simultaneously classifies an isolate based on the resistance

profile, against four drugs on a cohort of 8,388 MTB isolates.

Furthermore, the models were evaluated on the genomic data

using the same pre-processing techniques used in their ear-

lier study.44 The authors noted that for MDR-TB, the Deep

Denoising Auto-coder algorithm, that relies on non-linear

dimensionality reduction suitable for sparse datasets (like

mutation datasets) performed better than other algorithms in

the study, while achieving best sensitivity scores against all

drugs, except for rifampicin. In conclusion, the authors noted

that the traditional ML performance metrics might not be

suitable for the comparison and validation of multi-task algo-

rithms for clinical application.

Another study by Chen et al.8 explored deep learning mod-

els to predict the drug resistance profile against multiple TB

drugs based on the analysis of SNPs and INDELs, using a novel

Multi-task Wide and Deep Neural Network, that was evaluated on

a cohort of 3,601 MTB strains containing 1,228 MDR-TB

strains, against 11 drugs. The initial set of features identified

by the authors consisted of a total of 6,342 different INDELs

and SNPs in 30 promoter, intergenic, and coding regions,

which were then reduced, by considering their presence

across the cohort, using feature engineering techniques for

aggregating and deriving a final set of 222 features.

`The authors described the novel features of Multi-task

Wide and Deep Neural Network as a combination of two

models Logistic Regression, the “wide” aspect of the neural

network being an advantage while modelling the effect of

individual mutations and Multi-layer Perceptron model, the

“deep” aspect of the neural network being an advantage

allowing for modelling the complex epistatic effects to

influence the predictions.

The models considered in the study were, Single-task Wide

and Deep Neural Network (trained for all drugs individually),

Multi-task Wide and Deep Neural Network, Random Forest, Logistic

Regression were trained on a full set of 222 features, except for

Multi-layer Perceptron, which was trained only upon drug-spe-

cific resistance conferring features.

Fig. 2 –PRISMA flow diagram for the literature review on

studies related to Machine Learning (ML) applied to tubercu-

losis drug resistance prediction.
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The authors highlighted that there were significant perfor-

mance gains when compared to regularized Logistic Regression

and Random Forest. It is worth noting that Multi-task Wide and

Deep Neural Network was also evaluated on samples that had

only been partially phenotyped and the proposed Multi-task

architecture shared information across different TB drugs.

This was achieved by building upon the inter-drug similari-

ties in resistance pathway information and genotype-pheno-

type relationship leading to a more accurate phenotypic

prediction. The cohort was also analysed based on the 33 line-

age defining mutations, to calculate isolate-isolate (pairwise)

Euclidean distances ranging from 0 to 3.87, demonstrating

five well-defined clusters.

Furthermore, both Single-task (model trained on each drug

individually) and Multi-task Wide and Deep Neural Network

models were evaluated. In contrast to Single-task models, the

proposed Multi-task model predicted the drug resistance pro-

file for multiple drugs, allowing the model to have a holistic

view of the resistance pathway information concerning vari-

ous drugs and while taking into consideration the fact that

drug resistance can be caused by both direct genotype-pheno-

type relationships as well as epistatic effects.

The authors concluded that the Multi-task Wide and Deep

Neural Network (i) performed favourably and achieved a higher

sum of specificity and sensitivity when compared to all the

other models, (ii) was able to rank the mutations according to

their confidence level for prediction of resistance, and (iii)

was able to share the information / learning across the vari-

ous drugs rather than treating each drug individually.

In a follow-up study, Chen et al.13 conducted a compara-

tive analysis on the same dataset and the same cohort of

algorithms that was used in the previous work8 with the

objective to evaluate the utility of training models based on

frequent resistance-conferring variants as well as rare var-

iants that are known to be determinants of resistance for at

least one drug. The authors did not rely on reducing the num-

ber of contributing variables (dimensionality reduction) but

rather relied upon an interpretable set of input predictors for

Wide and Deep Neural Network and still observed improved per-

formance. This study pinpoints the possibility to predict drug

resistance especially for second and third line of drugs, and in

particular pyrazinamide, where the individual rare mutations

have been shown to be causative.

Other classes of algorithms, known for their interpretabil-

ity and high accuracy are Classification Trees and Gradient

Boosted Trees, that have also been utilized by Deelder et al.7 in

a study of 16,688 samples covering four main TB lineages, to

uncover novel putative mutations associated with resistance

to 14 drugs. The authors leveraged the interpretability of Clas-

sification Trees and superior prediction ability of Gradient

Boosted Trees for improving the overall resistance prediction

as they make fewer assumptions on the distribution and

functional relationships between features. It is worth

highlighting that in addition to yielding predictions, these

algorithms also rank the importance of the features.

These algorithms were trained on various features sets

consisting of (i) SNPs in resistance associated genes and (ii)

genome wide SNPs, with the inclusion and exclusion of co-

occurrent resistance markers. The authors noted that the

inclusion of co-occurrent resistance markers for multiple

drugs, led to superior results for Gradient Boosted Tree algo-

rithm, in terms of predictive accuracy and of AUC when com-

pared to other models for certain drugs.

However, the authors cautioned against clinical applica-

tion of the procedure because of the inclusion of co-occurrent

resistance markers and the ability of genome-wide Gradient

Boosted Tree model to capture covariate interactions, which

might not translate optimally into clinical environments,

since the markers by themselves, might be more indicative of

transmissibility rather than drug resistance. In conclusion,

the authors highlighted that the quantitative minimum

inhibitory concentration (MIC) scores as phenotypes could be

included in a future study to improve the overall prediction

metrics.

The study by Kouchaki et al.12 aimed at a large and diverse

cohort of 13,402 MTB isolates from multiple MTB lineages

across six continents and, including 11 TB drugs, targeting

the 23 resistance-conferring genes as established in a study

by Walker et al.19 With the increased size of the cohort, the

authors aimed to create MLmodels which were more general-

izable (applicable on any general dataset for MTB). The

authors observed that with increased size of the dataset, the

multi-variate genomic information, grew sparser and the

mutation information was spread throughout these numer-

ous variables. Therefore, the effects of dimensionality reduc-

tion, through the application of the Sparse Principal Component

Analysis / Non-Negative Matrix Factorization algorithms, were

also evaluated by the authors. Furthermore, the features were

divided into three distinct sets following the work done by

Yang et al.44

Algorithms such as Support Vector Machine, Linear Regression

and Product-of-Marginals methods were evaluated on the fea-

ture space after dimensionality reduction, along with the

evaluation of ensemble techniques such as Random Forest,

Adaboost and Gradient Boosted Trees. The ML algorithms were

able to rank according to importance, known resistance con-

ferring mutations for well-studied first line drugs and also

indicated correlation between lineage defining mutations

with drug resistance, for the second line drugs.

The authors reported enhancement in the performance of

Logistic Regression model and Gradient Boosting Trees model

when used in conjunction with a dimensionality reduction of

number of features using Sparse Principal Component Analysis /

Non-Negative Matrix Factorization algorithms in terms of F1

score (a metric for measuring algorithm’s classification

power), for second line TB drugs.

In a follow up study, Kouchaki et al. 21, investigated the use

of Single-label and Multi-label Random Forest on the same data-

set used in the previous study,12 with the dual goal of (i) eval-

uating its performance on drug resistance prediction and, (ii)

ranking mutations by the order of importance. The authors

noted that some mutations are commonly identified in MDR-

TB and extensively drug resistant (XDR-TB) isolates and sug-

gested that predicting the global phenotype (MDR-TB) rather

than the individual phenotype (RR-TB) could be a promising

approach. The Multi-label Random Forest algorithm simulta-

neously classifies the MTB isolate as being resistant to multi-

ple drugs, similar to the Wide and Deep Neural Network

algorithm by Chen et al,8 capturing the correlation between

the drugs for resistance co-occurrence.
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These Single-label and Multi-label Random Forest algorithms

were used to target the 23 genes identified by Walker et al,19

observing a total of 5,919 baseline variants from the 23 candi-

date genes. Due to fewer number of MDR-TB and XDR-TB

samples in the cohort, the dataset was treated with a strati-

fied sampling technique to minimize the imbalance in the

dataset. Furthermore, five feature sets were created using var-

ious sub-sets of mutations, that were used to evaluate the

impact of feature sets on the classification performance of

the algorithms.

As a sub-study, the authors also trained ML models

using only the top-ranked mutations (top 16-37 mutations)

to evaluate the overall classification performance of the

models and observed favourable results and noting that

increasing the number of features improved sensitivity,

but reduced specificity. In conclusion, the authors men-

tioned that the Multi-label Random Forest algorithm had

higher sensitivity and lower specificity when trained upon

overlapping set of variables (feature sets) derived from the

baseline features.

Protein sequences, complementary to genome sequen-

ces, have also been explored as a foundation of drug resis-

tance profile by Chowdhury et al. 16, where the authors

applied Stacked Ensemble algorithm on features derived

from physic-chemical, evolutionary, and structural proper-

ties (features) to predict resistance against capreomycin.

The algorithms considered in the study were Generalized

Linear Model, C5.0, Support Vector Machine and Stacked Ensem-

ble, which combined the other algorithms together into a

single classifier.

The authors highlighted that using protein sequences as a

foundation offers a better basis for further downstream anal-

ysis, since a greater number of features are discernible from

protein sequences and relied on the Pearson’s correlation

coefficient for dimensionality reduction, resulting in the

reduction of features from 621 down to 392. The Linear Regres-

sion, C5.0 and Support Vector Machine algorithms were used as

the base learners in the study, resulting in an overall increase

in the performance of the final stacked ensemble model,

which combined these base learners, while by itself Support

Vector Machine algorithm was identified as a strong performer

on the dataset.

For Stacked Ensemble’s meta-learner classifier algorithm,

the Generalized Linear Model, Linear Discriminate Analysis and

Random Forest were evaluated on their ability to combine the

base learners in an effective manner. The stacked ensemble

model with the Generalized Linear Model meta-classifier was

observed to give the best performance.16 In conclusion, the

authors highlighted that protein sequences, as opposed to

genome sequences, provide a richer feature set for ML algo-

rithms.

Other factors such as structural information (3-D struc-

tural mutation mapping), geographic diversity and pan-

genome analysis has also been used as a basis for ML analysis

in a study by Kavvas et al. 45. The authors selected a geneti-

cally, geographically, and phenotypically diverse MTB cohort

of 1,595 strains and analysed them for resistance against

13 TB drugs. Instead of relying upon the alignment-based fea-

ture engineering, the authors relied upon allele-based pan-

genomic basis for feature engineering which does not reduce

non-H37Rv variants to a collection of SNPs, while capturing

the strain-to-strain variation observed in the bacterial

genomes without biasing the variations relative to a single

reference genome such as that of MTB.

Furthermore, to validate the allele-based foundation,

the authors utilized statistical metrics such as (i) mutual

information and (ii) chi-squared and ANOVA F-test, for the

identification of resistance-determining genes with newly

constructed variant pan-genome, achieving comparable

results to the k-mer based approaches. The feature set

derived from alleles was used as a basis for Support Vector

Algorithm, due to its ability to utilize the relationships

between the features. In conclusion, Kavvas et al.45 out-

lined that while the algorithm provided insights, into the

anti-microbial resistance gene identification process, such

as the magnitude and sign of the alleles that represents

the allele’s contribution to drug resistance; it does not pro-

vide any insights into the correlation of any mutations in

a specific region with the resistance profile against specific

drugs.

Most of the studies have relied on complete (compre-

hensive) genome sequences, which is ideal although not

always possible. Alternatively, Nguyen et al.46 have

explored the possibility of predicting the drug resistance

profile of a sample after the removal of resistance-confer-

ring genes and focusing only on randomly selected core-

genes (25-500), defined as the genes common to members

of the same species which are not known for conferring

resistance. This exclusion of non-core-genes reduces the

chances of considering genes transferred horizontally

across species, for training ML models to be evaluated

across four different bacterial species.

Multiple XGBoost and Random Forest models47 were trained

upon feature sets derived from random selection of core

genes ranging from 25 to 500, with similar trends across vari-

ous species for classification score as well as error rates. The

authors noted that (i) the clade size and the distribution of

phenotypes within the clades had little effect on the accuracy

of the models, (ii) high-importance genes were distributed

over the genome of the organism, confirmed by the evolution

of models on 100 randomly sampled non-overlapping core

gene sets, (iii) the results of the models were not influenced

by the choice of algorithm and (iv) the models do not suffer

from overfitting, memorization, strain-specific SNPs or sam-

pling imbalances.

Conclusions

The knowledge and understanding of the biological phe-

nomena behind drug resistance mechanisms and the

drug-target interaction is still incomplete. Therefore, the

way that ML algorithms model this phenomenon might

differ based on the class of ML algorithm selected for a

particular drug. There is a stark difference between the

availability of the genomic data and analysis (within one

to nine days) versus the traditional three to eight weeks in

the case of the reference phenotypic evaluation method

on which the drug regimen of the treatment is adapted.

Once the WGS data of the MTB isolate is made available, it

6 braz j infect dis. 2022;26(1):102332



is possible, among other purposes, to predict drug resis-

tance profile based on ML, which can assist the clinical

decisions for effective treatment of TB by choosing ade-

quate drugs early on and thereby reducing the risks of

generating more difficult to treat forms of TB.

During our literature survey we observed that the current

state of knowledge of mutations that, either directly or indi-

rectly, impart drug resistance characteristics to the MTB

against specific drug candidates, is not exhaustive. Moreover,

there are multiple techniques which have been used for fea-

ture engineering ranging from SNPs and INDELs to alleles as

well as proteomics. As a result, various classes of ML algo-

rithms have been successful in specific aspects of drug resis-

tance prediction for example against a particular drug,

mutation-ranking etc. However, these alone are not indicative

of the overall predictive accuracy when we think in terms of

clinical applicability.

In the literature survey we observed that the performance

and clinical applicability of ML algorithms shows huge varia-

tions owing to factors such as (i) sampling of the training data

for MTB lineages, (ii) frequency of MDR and XDR samples in

the cohort, (iii) differences in feature engineering techniques,

(iv) multi-drug prediction accuracy, (v) performance evalua-

tion metrics, (vi) inclusion of non-WGS data in the training

dataset such as patient’s medical history and (vii) interpret-

ability of the MLmodels.

It is therefore worth investigating approaches that com-

bine (these) different classificationmodels and help overcome

their individual weaknesses, counter misclassification and

are adaptable towards the inclusion of other aspects involved

in the clinical application. One promising class of algorithm is

Stacked ensembles that could combine base learners into an

ensemble and has shown promise in its ability to counter

each base learner’s weaknesses and be more accurate overall

as a result. These algorithms were used in the study by

Chowdhury et al16 and combined the “base learners” using

another algorithm called a “meta-learner” to achieve a better

performance and made the model less prone to variability

across various drugs.
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